
CISC 3115: Introduction to 
Programming Using Java

Winter 2026 Prep Workshop 



Review of Java Fundamentals
● The Structure of a Java Program
● Basic Syntax Rules

01

What is Object-Oriented Programming (OOP)?02
Classes and Objects03

05 Overview and Next Steps

Itinerary

04 Inheritance, Abstract Classes, and Interfaces



Review of Java 
Fundamentals

01



The Structure of A Java Program
● As you already know, the structure of a basic Java 

program is as follows:



The Structure of A Java Program
● First, is the package declaration statement: 

○ It defines a namespace in which classes are 
stored. 

○ It is used to organize the classes based on 
functionality. 

○ If you omit the package statement, the class 
names are put into the default package, which has 
no name. 

○ Package statement cannot appear anywhere in the 
program. 

○ It must be the first line of your program or you 
can omit it.



The Structure of A Java Program
● Second, is the class declaration:

○ This line has various aspects of java 
programming:
■ public: This is access modifier keyword which 

tells compiler access to class. 
■ Various values of access modifiers can be 

public, protected, private or default (no 
value).

■ class: This keyword is used to declare a 
class. 

■ The name of class (HelloWorld) followed by 
this keyword.



The Structure of A Java Program
● Third, is the comment section:

○ There are three types of Java comments:
■ Single-Line Comments: Start with // and extend 

to the end of the line.
■ Multi-Line Comments: Start with /* and end 

with */. 
● They can span multiple lines.

■ Documentation Comments: Start with /** and end 
with */. 
● These are used to create formal 

documentation using Javadoc.



The Structure of A Java Program
● Fourth, is the main method declaration:

○ It is essential for all executable Java programs, 
because the execution of all Java programs starts 
from the main() method (regardless of other 
methods). 

○ In other words, it is an entry point of the 
class. 

○ It must be inside the class.
○ It is made up of six distinct parts: the access 

modifier, the static keyword, the return type, 
the name/signature, the method parameters, and 
the method body



The Structure of A Java Program



The Structure of A Java Program
● public: is an access specifier 

○ We should use a public keyword before the main() method 
so that JVM can identify the execution point of the 
program. 

○ If we use private, protected, and default before the 
main() method, it will not be visible to JVM

● static: You can make a method static by using the 
keyword static
○ We should call the main() method without creating an 

object. 
○ Static methods are the method which invokes without 

creating the objects, so we do not need any object to 
call the main() method.



The Structure of A Java Program
● void: this is the return type 

○ In Java, every method has the return type.
○ The void keyword acknowledges the compiler that main() 

method does not return any value.
● main(): It is a default signature which is predefined 

in the JVM. 
○ It is called by JVM to execute a program line by line 

and end the execution after completion of this method. 
● String [] args: The main() method also accepts some 

data from the user. 
○ It accepts a group of strings, which is called a string 

array. 
○ It is used to hold the command line arguments in the 

form of string values.



The Structure of A Java Program
● Lastly, there is a print statement inside of the 

body of the main method. 

● This particular print statement is made up of four 
parts:
○ System: the name of Java utility class.
○ out: an object which belongs to System class.
○ println: A utility method name which is used to 

send any String to the console.
○ “Hello World from Java”: a String literal set as 

argument to println method.



Basic Syntax Rules
● About Java programs, it is very important to keep in 

mind the following points:

● Case Sensitivity − Java is case sensitive, which 
means identifier Hello and hello would have 
different meaning in Java.

● Class Names − For all class names the first letter 
should be in Upper Case. If several words are used 
to form a name of the class, each inner word’s first 
letter should be in Uppercase.
○ Example: class MyJavaClass



Basic Syntax Rules
● Method Names − All method names should start with a 

Lowercase letter. If several words are used to form the 
name of the method, then each inner word's first letter 
should be in Uppercase.
○ Example: public void myMethodName()

● Program File Name − Name of the program file should 
exactly match the class name (Remember Java is case 
sensitive) and append '.java' to the end of the name 
(if the file name and the class name do not match, your 
program will not compile).
○ Example: If 'MyJavaProgram' is the class name, the 

file should be saved as 'MyJavaProgram.java'



Basic Syntax Rules
● All Java components require names. Names used for classes, 

variables, and methods are called identifiers.

● In Java, there are several points to remember about 
identifiers. They are as follows:
○ All identifiers should begin with a letter (A to Z or a 

to z), currency character ($) or an underscore (_).
○ After the first character, identifiers can have any 

combination of characters.
○ A keyword cannot be used as an identifier.
○ Most importantly, identifiers are case sensitive.
○ Examples of legal identifiers: age, $salary, _value, 

__1_value.
○ Examples of illegal identifiers: 123abc, -salary.



What is Object-Oriented Programming 
(OOP)?

02



What is Object-Oriented Programming (OOP)?
● Procedural programming (like C, COBOL, BASIC, etc.) 

which is about writing procedures or methods that 
perform operations on the data, while 
object-oriented programming (OOP) is a fundamental 
programming paradigm based on the concept of 
“objects”

● These objects can contain data in the form of fields 
(often known as attributes or properties) and code 
in the form of procedures (often known as methods).

● The core concept of the object-oriented approach is 
to break complex problems into smaller objects.



What is Object-Oriented Programming (OOP)?
● Object-oriented programming has several advantages over 

procedural programming:
○ OOP is faster and easier to execute
○ OOP provides a clear structure for the programs
○ OOP helps to keep the Java code DRY "Don't Repeat 

Yourself", and makes the code easier to maintain, 
modify and debug

○ OOP makes it possible to create full reusable 
applications with less code and shorter development 
time

● Tip: You should extract out the codes that are common 
for the application, and place them at a single place 
and reuse them instead of repeating it



Classes and Objects

03



Classes and Objects
● You should be partially familiar with the concept of a 

Java Class from your previous class, but what exactly 
is a class?

● A class is defined as a collection of objects. 

● You can also think of a class as a blueprint from which 
you can create an individual object.

● For example, Student is a class while a particular 
student named Tom is an object.

● To create a class, we use the keyword class.



Classes and Objects
● Properties of Java Classes:

○ It is not a real-world entity. It is just a template 
or blueprint or prototype from which objects are 
created.

○ It does not occupy memory.
○ It is a group of variables of different data types 

and a group of methods.
○ It can contain:

■ Data member(s)
■ Method(s)
■ Constructor(s)
■ Nested Class(s)
■ Interface(s)



Classes and Objects
● Properties of Java Classes:

○ It is not a real-world entity. It is just a template 
or blueprint or prototype from which objects are 
created.

○ It does not occupy memory.
○ It is a group of variables of different data types 

and a group of methods.
○ It can contain:

■ Data member(s)
■ Method(s)
■ Constructor(s)
■ Nested Class(s)
■ Interface(s)



Classes and Objects
● Most classes you write will have the keyword public 

before them though it is not required. 
● Let’s create a class called Person. 
● Classes are almost always named with capitalized names 

though this is a matter of style, not a rule of the 
language. 

● Here is the basic skeleton of a Person class:



Classes and Objects
● You can create instances of the Person class with the 

keyword new as in new Person() and you can declare 
variables that can hold a reference to a Person object 
with Person variableName.

● Or put it altogether to declare some variables and 
initialize each one with a reference to a new Person as 
shown here:

●

● So what makes up the body of the class?
● Remember that objects have both attributes and behaviors. 
● These correspond to instance variables and methods in the 

class definition.



Classes and Objects
● The first things we define in a class are usually the 

instance variables. 
○ They are called that because each instance of the class 

(each object) has its own set of variables that aren’t 
shared with other instances.

● The next thing we define in a class is usually its 
constructors. 
○ A constructor’s job is to initialize the instance 

variables when the object is created. Usually that will 
mean they need to take arguments.

● Lastly, the methods of the class define the behaviors of 
the objects of that class and share access to the object’s 
instance variables and when a method is called on an 
object it uses the instance variables for that object.



Classes and Objects



Classes and Objects
● As we’ve said, instance variables hold the data for an 

object. They record what an object needs to know to 
play its role in the program.

● They are also sometimes called attributes, fields, or 
properties.(Think of private as like your diary, only 
you should have direct access to it) 

● Similarly, in Java a private instance variable can only 
be accessed by code in the class that declares the 
variable.

● Note: Instance variables are declared right after the 
class declaration. 

● They usually start with private then the type of the 
variable and then a name for the variable. Private 
means only the code in this class has access to it.



Classes and Objects
● The Person class declares 3 private instance variables: 

● Once we have created a class like Person, we can create 
many instances (objects) of the class. 

● Each object will have their own copies of the same 
instance variables but with possibly different values in 
them



Classes and Objects
● In the source code for a class, constructors are 

usually written after the instance variables and before 
any methods.

● The signature of a constructor is similar to the 
signature of a method except there is no return type, 
not even void, and instead of a method name, the name 
of the constructor is the same as the name of the 
class. 

● The constructors you write will almost always be marked 
public. 

● Like methods, constructors also have a parameter list 
specified in parenthesis that declare the variables 
that will be used to hold the arguments passed when the 
constructor is called.



Classes and Objects
● The easiest way to write a constructor is to not write 

one. 
● If you do not write a constructor your class will 

automatically get what is called the default 
no-argument constructor. 

● This constructor will initialize all your instance 
variables to the default value for their type: 0 for 
int and double, false for boolean, and null for all 
reference types. 

● If those default values are sufficient to put your 
object into a valid state you may not need to write a 
constructor at all.



Classes and Objects
● Usually, however, if you are writing a class that has 

instance variables, you need to initialize your 
instance values to some other values. 

● In that case you probably need to write a constructor 
that takes arguments and uses them to initialize your 
instance variables.

● For example, look at the constructor from the Person 
class:



Classes and Objects
● This constructor ensures that all three of the instance 

variables (name, email, and phoneNumber) in Person are 
initialized to the values provided by whatever code called 
the constructor. 

● For example, in the constructor call new Person("Pat", 
"pat@gmail.com", "123-456-7890"), the argument “Pat” is 
passed into the parameter variable initName, which the 
constructor then assigns to the instance variable name.

● One important note: if you do write a constructor, Java 
will not generate the default constructor for you. 

● This is a good thing because it lets you make sure that 
instances of your class are always properly initialized. 
With this constructor in place, for instance, there’s no 
way to construct a Person object without providing the 
three required String values.



Classes and Objects
● Now to methods which define what we can actually do 

with an object. 
● The most important methods in a class are the public 

methods since they can be accessed from outside the 
class. 

● You may also write private methods that are not 
accessible outside of the class and therefore can only 
be used by other methods inside the same class. 

● As you’ve probably figured out, the public and private 
keywords determine the external access and visibility 
of classes, instance variables, constructors, and 
methods.



Classes and Objects
● The Person class has a void print method that takes no 

parameters and prints out all the data stored for a 
person object. 

● As we’ve discussed, the method can access and use the 
instance variables defined in the class: name, email, 
and phoneNumber but will get the values specific to the 
object we called print on.





Classes and Objects
● Now we can write a main method: 

public static void main (String [] args) { 
To create an object and test out constructor and method

● First, we need an object that is an instance of the 
class such as we get by calling its constructor.

● Then we use the dot (.) operator to call its public 
methods, for example p1.print() means call the print 
method on the object p1.



Inheritance, Abstract Classes, 
and Interfaces

04



Inheritance
● One of the really useful features of Object-Oriented 

programming is inheritance. You may have heard of someone 
coming into an inheritance, which often means they were left 
something from a relative that died. Or, you might hear 
someone say that they have inherited certain traits from their 
parents. 

● In Java, it is possible to inherit attributes and methods from 
one class to another. 

● We group the "inheritance concept" into two categories:
○ subclass (child) - the class that inherits from another 

class
○ superclass (parent) - the class being inherited from

● Inheritance in Java is a mechanism in which one object 
acquires all the properties and behaviors of a parent object.



Inheritance
● The idea behind inheritance in Java is that you can create new 

classes that are built upon existing classes. 
● When you inherit from an existing class, you can reuse methods 

and fields of the parent class. Moreover, you can add new 
methods and fields in your current class also.

● To inherit from a class, use the extends keyword.
● When one class inherits from another, we can say that it is 

the same kind of thing as the parent class (the class it 
inherits from). 

● For example, a car is a kind of vehicle, a motorcycle is 
another kind of vehicle. 

● All vehicles have a make, model, and year that they were 
created, can go forward, backward, turn left, and turn right.

● The following UML (Unified Modeling Language) class diagram 
shows the classes and the relationships between the classes



Inheritance



Inheritance
● As aforementioned, a parent class is specified using the 

extends keyword
● Use the Java keyword extends after the class name and then 

followed by the parent class name to specify the parent class 
as shown below:

● Note: While a person has two parents, a Java class can only 
inherit from one parent class. 

● If you leave off the extends keyword when you declare a class 
then the class will inherit from the Object class.



Inheritance
● Inheritance is useful for generalization in which case you may 

notice that several classes share the same data and/or 
behavior and which you can contain in a parent class.

● It is also useful for specialization which is when you want 
most of the behavior of a parent class, but want to do at 
least one thing differently and/or add more data. 

● For example, Customers and Employees 
are both people so it makes sense use 
the general Person class.

● However, an employee is a person but 
also has a unique id. 

● A customer is a person, but also has a 
credit card.

● This is an example of specialization.



Inheritance
● In Java, the super keyword is used to refer to 

the parent class of a subclass. 
● Whenever you create the instance of subclass, an 

instance of parent class is created implicitly 
which is referred by super reference variable.

● super is used to call a superclass constructor, 
to call a superclass method, and to access a 
superclass field

● When calling a superclass constructor, the 
super() statement must be the first statement in 
the constructor of the subclass.







Abstraction
● Data abstraction is the process of hiding certain details 

and showing only essential information to the user (i.e. 
showing only the required features, and hiding how those 
features are implemented behind the scene)

● Abstraction can be achieved with either abstract classes 
or interfaces

● The abstract keyword is a non-access modifier, used for 
classes and methods:

○ Abstract class: is a restricted class that cannot 
be used to create objects (to access it, it must be 
inherited from another class).

○ Abstract method: can only be used in an abstract 
class, and it does not have a body. The body is 
provided by the subclass (inherited from).



Abstraction
● Another way to achieve abstraction in Java, is with 

interfaces.
● An interface is a completely "abstract class" that is used 

to group related methods with empty bodies
● To access the interface methods, the interface must be 

"implemented" (kinda like inherited) by another class with 
the implements keyword (instead of extends). 

● The body of the interface method is provided by the 
"implement" class

● A class can inherit from only one abstract class, but it 
can implement multiple interfaces. 

● This is because an abstract class represents a type of 
object, while an interface represents a set of behaviors.



Abstraction



Overview and Next Steps
05



Overview
● At this point we have reviewed the basic Java syntax 

and main fundamentals 
● In addition, you should have gained some familiarity 

with:
○ The concept of Object-Oriented Programming vs 

Procedural Programming 
○ The concept of Classes and Objects
○ Inheritance and Subclasses and Superclasses
○ The differences between an Abstract Class and an 

Interface
● All of which will be covered in further depth in your 

upcoming 3115 course (along with more concepts as well)



Next Steps
● You are highly encouraged to read the following text 

(one of the best intro books for Java AND available as 
a free PDF online):

Allen Downey and Chris Mayfield, Think Java: 
How to Think Like a Computer Scientist, 
2nd Edition, Version 7.1.0, Green Tea Press, 
2020, Creative Commons License.

● Furthermore, tutors are available in the Learning 
Center – 1300 Boylan Hall if you ever need any study 
assistance throughout the course

● Congratulations and best of luck on your CS journey! 🎉



CREDITS: This presentation template was created by 
Slidesgo, and includes icons by Flaticon, and infographics 

& images by Freepik

Thank You!
Presented By: 
Amara Auguste

CS Tutor, Graduate Student, 
and Adjunct Lecturer

Do you have any further questions?

amara.auguste@brooklyn.cuny.edu

amaraauguste.github.io

https://slidesgo.com/?utm_source=Slidesgo_template&utm_medium=referral-link&utm_campaign=SG_Credits&utm_term=Freepik
https://www.flaticon.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=sg_credits&utm_content=flaticon
https://www.freepik.com/home
mailto:amara.auguste@brooklyn.cuny.edu

