LT

1D

CISC 3115: Introduction to
Programming Using Java

ﬁ Winter 2026 Prep Workshop

JAVA s

LT

1D

01

02
03
04

05

I ?
Itinerary —I}

Review of Java Fuhdamentals

® The Structure of a Java Program
e Basic Syntax Rules

What is Object-Oriented Programming (OOP)?

Classes and Objects

Inheritance, Abstract Classes, and Interfaces

Overview and Next Steps

LT

1D

01

Review of Java
Fundamentals

LT

n

1D

The Structure of A Java Program

e As you already know, the structure of a basic Java
program 1s as follows:

(1 =

J HelloWorld.java 3

oo ‘“‘Lﬁ package sct;

N publxc class HellowWorld { AT
" t"- s 1)
- e O

N
\ 4 3 ,/ public static void main(String[] args) {

S~ __-»! > S/stem out. prlntln(Hello World from Java®™);

e

LT

n

1D

The Structure of A Java Program

First, 1s the package declaration statement:

o It defines a namespace in which classes are
stored.

o It is used to organize the classes based on
functionality.

o If you omit the package statement, the class
names are put 1nto the default package, which has
no name.

o Package statement cannot appear anywhere in the
program.

o It must be the first line of your program or you
can omit 1it.

LT

n

1D

The Structure of A Java Program

e Second, 1is the class declaration:
o This 1line has various aspects of java
programming:

m public: This is access modifier keyword which
tells compiler access to class.

m Varilous values of access modifiers can be
public, protected, private or default (no
value).

m class: This keyword 1s used to declare a
class.

m The name of class (HellowWorld) followed by
this keyword.

LT

n

1D

The Structure of A Java Program

e Third, is the comment section:
o There are three types of Java comments:

Single-Line Comments: Start with // and extend

to the end of the 1line.

Multi-Line Comments: Start with /* and end

with */.

e They can span multiple lines.

Documentation Comments: Start with /** and end

with */.

e These are used to create formal
documentation using Javadoc.

LT

n

1D

The Structure of A Java Program

e Fourth, is the main method declaration:

O

It is essential for all executable Java programs,
because the execution of all Java programs starts
from the main() method (regardless of other
methods).

In other words, 1t 1s an entry point of the
class.

It must be inside the class.

It 1s made up of six distinct parts: the access
modifier, the static keyword, the return type,
the name/signature, the method parameters, and
the method body

LT

n

1D

The Structure of A Java Program

Keyword ppethod name Array of string type

T T

public static void main(String args([])

v

Access Specifier
peci Return type

LT

n

1D

The Structure of A Java Program

public: is an access specifier

o We should use a public keyword before the main() method
so that JVM can identify the execution point of the
program.

o If we use private, protected, and default before the
main() method, it will not be visible to JVM

static: You can make a method static by using the

keyword static

o We should call the main() method without creating an
object.

o Static methods are the method which invokes without

creating the objects, so we do not need any object to
call the main() method.

LT

n

1D

The Structure of A Java Program

void: this is the return type

o In Java, every method has the return type.

o The void keyword acknowledges the compiler that main()
method does not return any value.

main(): It is a default signature which is predefined

in the JVM.

o It 1s called by JVM to execute a program line by line
and end the execution after completion of this method.

String [] args: The main() method also accepts some

data from the user.

o It accepts a group of strings, which 1s called a string
array.

o It 1s used to hold the command line arguments in the
form of string values.

LT

n

1D

The Structure of A Java Program

Lastly, there is a print statement inside of the
body of the main method.

This particular print statement 1s made up of four
parts:

©)
©)
©)

System: the name of Java utility class.

out: an object which belongs to System class.
println: A utility method name which is used to
send any String to the console.

“Hello World from Java”: a String literal set as
argument to println method.

LT

n

1D

Basic Syntax Rules

About Java programs, 1t 1s very important to keep 1n
mind the followlng points:

Case Sensitivity - Java 1is case sensitive, which
means 1dentifier Hello and hello would have
different meaning 1n Java.

Class Names - For all class names the first letter
should be 1in Upper Case. If several words are used
to form a name of the class, each inner word’s first
letter should be in Uppercase.

o Example: class MyJavaClass

LT

n

1D

Basic Syntax Rules

Method Names - All method names should start with a
Lowercase letter. If several words are used to form the
name of the method, then each inner word's first letter
should be in Uppercase.

o Example: public void myMethodName()

Program File Name - Name of the program file should

exactly match the class name (Remember Java is case

sensitive) and append '.java' to the end of the name

(if the file name and the class name do not match, your

program will not compile).

o Example: If 'MyJavaProgram' 1s the class name, the
file should be saved as 'MyJavaProgram.java'

LT

n

1D

Basic Syntax Rules

All Java components require names. Names used for classes,
variables, and methods are called identifiers.

In Java, there are several points to remember about
ldentifiers. They are as follows:

O

All identifiers should begin with a letter (A to Z or a
to z), currency character ($) or an underscore (_).
After the first character, identifiers can have any
combination of characters.

A keyword cannot be used as an identifier.

Most importantly, identifiers are case sensitive.
Examples of legal identifiers: age, $salary, _value,
1 value.

Examples of 1llegal identifiers: 123abc, -salary.

LT

1D

02

What is Object-Oriented Programming

(O0P)?
ST

<OOP>
e

LT

n

1D

What is Object-Oriented Programming (OOP)?

Procedural programming (like C, COBOL, BASIC, etc.)
which 1s about writing procedures or methods that
perform operations on the data, while
object-oriented programming (OOP) is a fundamental
programming paradigm based on the concept of
“objects”

These objects can contain data in the form of fields
(often known as attributes or properties) and code
in the form of procedures (often known as methods).
The core concept of the object-oriented approach 1s
to break complex problems into smaller objects.

LT

n

1D

What is Object-Oriented Programming (OOP)?

Object-oriented programming has several advantages over

procedural programming:

o OOP is faster and easier to execute

o OOP provides a clear structure for the programs

o OOP helps to keep the Java code DRY "Don't Repeat
Yourself", and makes the code easier to maintain,
modify and debug

o OOP makes it possible to create full reusable
applications with less code and shorter development
time

Tip: You should extract out the codes that are common

for the application, and place them at a single place

and reuse them instead of repeating it

LT

1D

Y 03

Classes and Objects

]

LT

n

1D

Classes and Objects

You should be partially familiar with the concept of a
Java Class from your previous class, but what exactly
1s a class?

A class is defined as a collection of objects.

You can also think of a class as a blueprint from which
you can create an individual object.

For example, Student is a class while a particular
student named Tom 1s an object.

To create a class, we use the keyword class.

LT

n

1D

Classes and Objects

e Properties of Java Classes:

©)

It 1s not a real-world entity. It 1s just a template
or blueprint or prototype from which objects are
created.

It does not occupy memory.

It 1s a group of variables of different data types
and a group of methods.

It can contain:

m Data member(s)

Method(s)

Constructor(s)

Nested Class(s)

Interface(s)

LT

n

1D

Classes and Objects

e Properties of Java Classes:

©)

It 1s not a real-world entity. It 1s just a template
or blueprint or prototype from which objects are
created.

It does not occupy memory.

It 1s a group of variables of different data types
and a group of methods.

It can contain:

m Data member(s)

Method(s)

Constructor(s)

Nested Class(s)

Interface(s)

LT

n)

1D

Classes and Objects

e Most classes you write will have the keyword public
before them though it 1s not required.

e Let’'s create a class called Person.

e (Classes are almost always named with capitalized names
though this 1s a matter of style, not a rule of the
language.

e Here 1s the basic skeleton of a Person class:

public class Person

// define class here - also called the “body” of the class

LT

n

1D

Classes and Objects

e You can create instances of the Person class with the
keyword new as in new Person() and you can declare
variables that can hold a reference to a Person object
with Person variableName.

e Or put it altogether to declare some variables and
initialize each one with a reference to a new Person as
shown here:

Person ada = new Person();
Person charles = new Person();

e So what makes up the body of the class?

e Remember that objects have both attributes and behaviors.

e These correspond to instance variables and methods in the
class definition.

LT

n

1D

Classes and Objects

The first things we define 1n a class are usually the
instance variables.

o They are called that because each instance of the class
(each object) has its own set of variables that aren’t
shared with other instances.

The next thing we define 1in a class 1s usually 1its
constructors.

o A constructor’'s job is to initialize the instance
variables when the object is created. Usually that will
mean they need to take arguments.

Lastly, the methods of the class define the behaviors of

the objects of that class and share access to the object’s
instance variables and when a method 1s called on an
object 1t uses the instance variables for that object.

LT

n

1D

Classes and Objects

Person Class

Private Encapsulated Data:
-name
-email
-phoneNumber

Public Methods
+Person(String n, String e, Stnng p)
+print()

e

e

p1 object
name = "Sana"
email = "sana@gmail com"

phoneNumber="123-456-7890"

p2 object

name = "Jean"
email = "jean@gmail.com"

phoneNumber="404- 899.9955"

LT

n

1D

Classes and Objects

As we’ve saild, instance variables hold the data for an
object. They record what an object needs to know to
play 1ts role in the program.

They are also sometimes called attributes, fields, or
properties.(Think of private as like your diary, only
you should have direct access to it)

Similarly, in Java a private instance variable can only
be accessed by code in the class that declares the
variable.

Note: Instance variables are declared right after the
class declaration.

They usually start with private then the type of the
varliable and then a name for the variable. Private
means only the code in this class has access to 1it.

LT

n

1D

Classes and Objects

The Person class declares 3 private instance variables:

// instance variables
private String name;
private String email;

private String phoneNumber;

Once we have created a class like Person, we can create
many instances (objects) of the class.

Each object will have their own copies of the same
instance variables but with possibly different values 1n
them

LT

n

1D

Classes and Objects

In the source code for a class, constructors are
usually written after the instance variables and before
any methods.

The signature of a constructor is similar to the
signature of a method except there is no return type,
not even void, and instead of a method name, the name
of the constructor is the same as the name of the
class.

The constructors you write will almost always be marked
public.

Like methods, constructors also have a parameter list
specified in parenthesis that declare the variables
that will be used to hold the arguments passed when the
constructor is called.

LT

n)

1D

Classes and Objects

The easilest way to write a constructor 1s to not write
one.

If you do not write a constructor your class will
automatically get what is called the default
no-argument constructor.

This constructor will initialize all your instance
variables to the default value for their type: 0 for
int and double, false for boolean, and null for all
reference types.

If those default values are sufficient to put your
object into a valid state you may not need to write a
constructor at all.

LT

n)

1D

Classes and Objects

Usually, however, 1f you are writing a class that has
instance varilables, you need to i1nitialize your
instance values to some other values.

In that case you probably need to write a constructor
that takes arguments and uses them to initialize your
instance varilables.

For example, look at the constructor from the Person
class:

public Person(String initName, String initEmail, String initPhone)
{

name = initName;

email = initEmail;

phoneNumber = initPhone;

LT

n

1D

Classes and Objects

This constructor ensures that all three of the instance
variables (name, email, and phoneNumber) in Person are
initialized to the values provided by whatever code called
the constructor.

For example, in the constructor call new Person("Pat",
"patagmail.com", "123-456-7890"), the argument “Pat” is
passed into the parameter variable initName, which the
constructor then assigns to the instance variable name.
One important note: if you do write a constructor, Java
will not generate the default constructor for you.

This 1s a good thing because 1t lets you make sure that
instances of your class are always properly initialized.
With this constructor in place, for instance, there’'s no
way to construct a Person object without providing the
three required String values.

LT

n)

1D

Classes and Objects

Now to methods which define what we can actually do
with an object.

The most important methods in a class are the public
methods since they can be accessed from outside the
class.

You may also write private methods that are not
accessible outside of the class and therefore can only
be used by other methods inside the same class.

As you’'ve probably figured out, the public and private
keywords determine the external access and visibility
of classes, 1nstance varilables, constructors, and
methods.

LT

n

1D

Classes and Objects

The Person class has a void print method that takes no
parameters and prints out all the data stored for a
person object.

As we've discussed, the method can access and use the
instance varilables defined in the class: name, emaill,
and phoneNumber but will get the values specific to the
object we called print on.

public void print()

{
System.out.println("Name: " + name);
System.out.println("Email: " + email);
System.out.println("Phone Number: " + phoneNumber);

}

phoneNumber;

//constructor
Person (
name = n;
email = e;
phoneNumber = pN;

print() {
.out.println("Name:

.out.println("Email:
.out.println("Phone number:

[S SN

N Oy B

name);
email);

n

=
(00)

phoneNumber) ;

® W

NN =

[

LT

n

1D

Classes and Objects

e Now we can write a main method:
public static void main (String [] args) {
To create an object and test out constructor and method
e First, we need an object that is an instance of the
class such as we get by calling its constructor.
e Then we use the dot (.) operator to call its public
methods, for example pl.print() means call the print
method on the object p1l.

// call the constructor to create a new person

Person pl = new Person("Sana", "sana@gmail.com", "123-456-7890");
// call pl's print method

pl.print();

LT

1D

04

Inheritance, Abstract Classes,

and Interfaces

LT

n

1D

lnheritance

One of the really useful features of Object-Oriented

programming is inheritance. You may have heard of someone

coming into an inheritance, which often means they were left

something from a relative that died. Or, you might hear

someone say that they have inherited certain traits from their

parents.

In Java, 1t 1s possible to 1nherit attributes and methods from

one class to another.

We group the "inheritance concept" into two categories:

o subclass (child) - the class that inherits from another
class

o superclass (parent) - the class being inherited from

Inheritance in Java is a mechanism in which one object
acquires all the properties and behaviors of a parent object.

LT

n

1D

lnheritance

The i1dea behind inheritance in Java 1s that you can create new
classes that are built upon existing classes.

When you inherit from an existing class, you can reuse methods
and fields of the parent class. Moreover, you can add new
methods and fields in your current class also.

To 1nherit from a class, use the extends keyword.

When one class inherits from another, we can say that 1t 1is
the same kind of thing as the parent class (the class it
inherits from).

For example, a car is a kind of vehicle, a motorcycle 1is
another kind of vehicle.

All vehicles have a make, model, and year that they were
created, can go forward, backward, turn left, and turn right.
The following UML (Unified Modeling Language) class diagram
shows the classes and the relationships between the classes

LT

n

1D

Parent Class

Children Classes

lnheritance

Vehicle

make
model
year

forward(int amount)
backward(intamount)

turnLeft()
turnRight()

T

Car

Motorcycle

LT

n

1D

lnheritance

e As aforementioned, a parent class 1s specified using the
extends keyword

e Use the Java keyword extends after the class name and then
followed by the parent class name to specify the parent class
as shown below:

public class Car extends Vehicle
public class Motorcycle extends Vehicle

e Note: While a person has two parents, a Java class can only
inherit from one parent class.

e If you leave off the extends keyword when you declare a class
then the class will inherit from the Object class.

LT

1D

n

lnheritance

Inheritance is useful for generalization in which case you may
notice that several classes share the same data and/or
behavior and which you can contain 1in a parent class.

It is also useful for specialization which is when you want
most of the behavior of a parent class, but want to do at
least one thing differently and/or add more data.

Person

name

For example, Customers and Employees address
are both people so it makes sense use

the general Person class. Z>
However, an employee is a person but

also has a unique id. | |
o Customer Employee
A customer 1s a person, but also has a
credit card.
This is an example of specialization.

creditCardinfo id

LT

n

1D

lnheritance

In Java, the super keyword 1s used to refer to
the parent class of a subclass.

Whenever you create the instance of subclass, an
instance of parent class 1s created implicitly
which 1s referred by super reference variable.
super 1s used to call a superclass constructor,
to call a superclass method, and to access a
superclass field

When calling a superclass constructor, the
super() statement must be the first statement in
the constructor of the subclass.

Customer Person {

ance variables

1S T ¢
Il LAl A | L

ccInfo;

it N
e .
FUucC LoJ

Customer (n,
(n, e, pN); //calls
ccInfo = cc;

printCC () {
.out.println("Credit card #:

ccInfo);

Main {

! /o1 24+ A
//main method

Crivu

main (_ [1 args) {

,
reate new Person obj

e
Person pl Person ("Sana", "sana@gmail.com", "123-456-7890");
pl.print();

.out.println(”

Person p2 Person ("Lee", "leef@gmail.com", "123-456-7890");
p2.print();
.out.println(”
Customer c1 Customer(“Tom", "t 6789");
cl.print(); //inherited from super on
cl.printCC(); //written in su a

LT

n

1D

Abstraction

Data abstraction is the process of hiding certain details
and showing only essential information to the user (i.e.
showing only the required features, and hiding how those
features are implemented behind the scene)

Abstraction can be achieved with either abstract classes
or interfaces

The abstract keyword is a non-access modifier, used for
classes and methods:

o Abstract class: is a restricted class that cannot
be used to create objects (to access it, it must be
inherited from another class).

o Abstract method: can only be used in an abstract
class, and it does not have a body. The body is
provided by the subclass (inherited from).

LT

n

1D

Abstraction

Another way to achieve abstraction 1in Java, 1s with
interfaces.

An interface is a completely "abstract class" that is used
to group related methods with empty bodies

To access the interface methods, the interface must be
"implemented" (kinda like inherited) by another class with
the implements keyword (instead of extends).

The body of the interface method 1s provided by the
"implement" class

A class can inherit from only one abstract class, but it
can implement multiple interfaces.

This 1s because an abstract class represents a type of
object, while an interface represents a set of behaviors.

LT

n

1D

Abstraction

Interfaces vs. Abstract Classes

Interface

Vehicle

Implements

Abstraction

Dog

Extends

Blacklab

LT

1D

0o

Overview and Next Steps

o

LT

n

1D

Overview

At this point we have reviewed the basic Java syntax

and main fundamentals

In addition, you should have gained some familiarity

with:

o The concept of Object-Oriented Programming vs
Procedural Programming

o The concept of Classes and Objects

o Inheritance and Subclasses and Superclasses

o The differences between an Abstract Class and an
Interface

All of which will be covered in further depth i1n your

upcoming 3115 course (along with more concepts as well)

LT

n

1D

Next Steps

e You are highly encouraged to read the following text
(one of the best intro books for Java AND available as

a free PDF online):

Allen Downey and Chris Mayfield, Think Java:
How to Think Like a Computer Scientist,

2nd Edition, Version 7.1.0, Green Tea Press,
2020, Creative Commons License.

e Furthermore, tutors are available in the Learning
Center - 1300 Boylan Hall if you ever need any study

assistance throughout the course

e Congratulations and best of luck on your CS journey! &

LT

n)

1D

7

 S—

a——p

Thank Youl!

Presented By:

Amara Auguste
CS Tutor, Graduate Student,
and Adjunct Lecturer

Do you have any further questions?

amara.augusteagbrooklyn.cuny.edu

amaraauguste.github.io

https://slidesgo.com/?utm_source=Slidesgo_template&utm_medium=referral-link&utm_campaign=SG_Credits&utm_term=Freepik
https://www.flaticon.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=sg_credits&utm_content=flaticon
https://www.freepik.com/home
mailto:amara.auguste@brooklyn.cuny.edu

